Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 9, 2026
-
Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.more » « less
-
Phospholipid bilayers can be described as capacitors whose capacitance per unit area (specific capacitance, Cm) is determined by their thickness and dielectric constant–independent of applied voltage. It is also widely assumed that the Cm of membranes can be treated as a “biological constant”. Recently, using droplet interface bilayers (DIBs), it was shown that zwitterionic phosphatidylcholine (PC) lipid bilayers can act as voltage-dependent, nonlinear memory capacitors, or memcapacitors. When exposed to an electrical “training” stimulation protocol, capacitive energy storage in lipid membranes was enhanced in the form of long-term potentiation (LTP), which enables biological learning and long-term memory. LTP was the result of membrane restructuring and the progressive asymmetric distribution of ions across the lipid bilayer during training, which is analogous, for example, to exponential capacitive energy harvesting from self-powered nanogenerators. Here, we describe how LTP could be produced from a membrane that is continuously pumped into a nonequilibrium steady state, altering its dielectric properties. During this time, the membrane undergoes static and dynamic changes that are fed back to the system’s potential energy, ultimately resulting in a membrane whose modified molecular structure supports long-term memory storage and LTP. Here, we also show that LTP is very sensitive to different salts (KCl, NaCl, LiCl, and TmCl3), with LiCl and TmCl3 having the most profound effect in depressing LTP, relative to KCl. This effect is related to how the different cations interact with the bilayer zwitterionic PC lipid headgroups primarily through electric-field-induced changes to the statistically averaged orientations of water dipoles at the bilayer headgroup interface.more » « less
-
We present a numerical investigation of the modes of adhesion and endocytosis of two spherocylindrical nanoparticles (SCNPs) on planar and tensionless lipid membranes, using systematic molecular dynamics simulations of an implicit-solvent model, with varying values of the SCNPs' adhesion strength and dimensions. We found that at weak values of the adhesion energy per unit of area, ξ , the SCNPs are monomeric and adhere to the membrane in the parallel mode. As ξ is slightly increased, the SCNPs dimerize into wedged dimers, with an obtuse angle between their major axes that decreases with increasing ξ . However, as ξ is further increased, we found that the final adhesion state of the two SCNPs is strongly affected by the initial distance, d 0 , between their centers of mass, upon their adhesion. Namely, the SCNPs dimerize into wedged dimers, with an acute angle between their major axes, if d 0 is relatively small. However, for relatively high d 0 , they adhere individually to the membrane in the monomeric normal mode. For even higher values of ξ and small values of d 0 , the SCNPs cluster into tubular dimers. However, they remain monomeric if d 0 is high. Finally, the SCNPs endocytose either as a tubular dimer, if d 0 is low or as monomers for large d 0 , with the onset value of ξ of dimeric endocytosis being lower than that of monomeric endocytosis. Dimeric endocytosis requires that the SCNPs adhere simultaneously at nearby locations.more » « less
-
Abstract Using molecular dynamics simulations, we study a driven, nonadditive binary mixture of spherical particles confined to move in two dimensions and immersed in an explicit solvent consisting of point particles with purely repulsive interactions. We show that, without a drive, the mixture of spherical particles phase separates and coarsens with kinetics consistent with an Ising-like conserved dynamics. Conversely, when the drive is applied, the coarsening is arrested and the system develops large density fluctuations. We show that the drive creates domains of a characteristic size which decreases with an increasing force. Furthermore, we find that these domains are anisotropic and can be oriented either parallel or perpendicular to the drive direction. Finally, we connect our findings to existing theories of strongly-driven systems, pointing out the importance of introducing the explicit solvent particles to break the Galilean invariance of the system.more » « less
An official website of the United States government
